
Optimizing Data Systems
for NVIDIA Merlin and Triton
March 2023

Sam Partee
Principal Engineer – Redis – Applied AI

Tyler Hutcherson
Senior Engineer – Redis – Applied AI

• Introduction to Redis in ML Pipelines

• Recommender System Pipelines with Redis and
NVIDIA Merlin

• Introduction

• Benchmarking setup

• Baseline architecture and performance

• Data pipeline optimizations

1. Ensemble stage consolidation

2. Direct Redis communication

3. Vector search feature retrieval

4. Inference caching

• Performance Summary and Next Steps

Table of Contents

Agenda

Redis in ML Pipelines

3

Redis for Real-Time ML Data

Single-digit millisecond
Feature Retrieval

A Composable Platform for
Intelligent Applications
Redis Feature Store for VectorsRedis Feature Store

Redis – Online Feature Store

Feature Platform for ML

Feature StoreFeature Pipelines

Monitoring

Feature Repository

Batch Data
Sources

On-premise or cloud (compute, networking and storage)

Offline

Online

Offline training

Real-Time
Sources

Feature Stores

End-to-end feature pipeline using Redis, Triton, and Feast on GCP

Feature Store – GCP Reference Architecture

Code: https://github.com/RedisVentures/redis-feast-gcp

https://github.com/RedisVentures/redis-feast-gcp

Vector Similarity Search Pipeline with Redis

Audio

Text

Videos

Audio model

Texts model

Videos model

RediSearch Vector
Similarity Search

Audio Vector
Embeddings

Text Vector
Embeddings

Video Vector
Embeddings

Redis as a Vector Database

• Redis: Low-latency, scalable, in-memory
database

• Indexing methods
• HSNW (ANN)

• Flat (KNN)

• Distance metrics
• L2, Cosine, internal product

• Support for hybrid queries
• Vector search + filtering by text, geo, etc.

• Store vectors in JSON (new in 2.6)

Redis Vector Similarity Search –
RediSearch

Redis – Vector Similarity Search
Feature Set

Recommender System Pipelines
with Redis and NVIDIA Merlin

9

Introduction

Data Systems – Multi-stage Recommender

• Two Primary Stages

- Retrieval – emphasis on speed and efficiency. A relevant
subset is selected from a large pool of
potential candidates. ANN algorithms commonly used.

- Ranking - emphasis on precision and accuracy.
Models are more computationally complex (e.g. DLRM)
and rank subset of items based on likelihood of user
interaction.

• Serving in Real-Time

- Triton Ensemble enables multi-stage DAG
processing per inference call. Variety of supported
backends (e.g. Tensorflow, PyTorch, FIL, Python)

- Low latency & high throughput is key.

• Merlin Building Blocks

- NVTabular – Distributed GPU Data Processing

- Triton – Model Serving

- Merlin Systems – Utilities for RecSys

- HugeCTR - Distributed RecSys Model Library

Architecture – Baseline

Data Systems – Multi-stage Recommender

7 Stages of RecSys Pipeline

1. User Feature Retrieval

2. Create User Embedding

3. Vector Search for TopK Items

4. TopK Item Feature Retrieval

5. Unroll Features (processing)

6. Ranking Model (DLRM)

7. Softmax Sampling

Code: https://github.com/RedisVentures/Redis-Recsys

https://github.com/RedisVentures/Redis-Recsys

Performance – Baseline

Data Systems – Performance

• Importance of baseline

- Don't start with model optimizations

- Ensure data pipeline first

• Approach to Optimization

- Start with smaller models

- Over-emphasize data pipeline

- Optimize data movement

- Then scale and optimize models

• Feature retrieval accounts for ~90%

of latency.

Benchmarking Setup

Data Systems – Multi-stage Recommender

• Triton Inference Server
- Instance: g4dn.xlarge, 4 vCPU, T4 16Gb GPU

• Redis Enterprise Database
- Instance: i3.xlarge, 4 vCPU, 32Gb RAM
- Shard Count: 1 master, 1 replica (highly available)

• Benchmarking Client with Perf Analyzer
- Instance: t2.2xlarge, 8 vCPU
- Concurrency: 16

• Grafana & Prometheus
- Instance: t3.micro, 2 vCPU

Architecture - Optimization 1 – Stage Consolidation

Data Systems – Performance

6 Stages of RecSys Pipeline

1. User Feature Retrieval

2. Create User Embedding

3. VSS and Item Feature
Retrieval

4. TopK Items Feature Retrieval

5. Unroll Features (processing)

6. Ranking Model

7. Softmax Sampling

Results of Stage Consolidation

Data Systems – Performance
Performance - Optimization 1 – Stage Consolidation

• Change: Reduce number of ensemble

stages by one, combining VSS and item

retrieval

• Compared to baseline

- 85.57% increase in throughput

- 46.15% decrease in Avg latency

- 29.22% decrease in p99 Latency

Architecture - Optimization 2 – Direct Redis Communication (Remove Feast)

Data Systems – Performance

• Feast is useful for feature management, orchestration,
and cataloging.

• Drawbacks

- Serialization can add too much overhead for
high-throughput applications. (protobuf)

- Direct communication with Redis client allows
for async calls and pipelines.

- Enables future optimizations in combining
feature retrieval and vector search.

Results of Feast Removal

Data Systems – Performance
Performance - Optimization 2 - Direct Redis Communication (Remove Feast)

• Change: Remove Feast SDK Layer

• Item features retrieved by Redis client

directly communicating with Redis

• Compared to previous optimization

- 99.28% increase in throughput

- 49.81% decrease in Avg latency

- 62.88% decrease in p99 Latency

Architecture - Optimization 3 – Vector Search Retrieval of Item Features

Data Systems – Performance

• Built-In hash Retrieval

- RediSearch includes hash data in
response object.

- Eliminates need for separate
database calls to retrieve item
features for ranking

• Enabled by using Redis hash instead
of Feast protobuf format

• RediSearch can also use JSON format
instead of HASH

Results of Vector Search Feature Retrieval

Data Systems – Performance
Performance - Optimization 3 - Vector Search Retrieval of Item Features

• Change: Item features retrieved by

vector search instead of HGETALL

• K-1 reduction in calls to Redis where K

is the number of items retrieved.

• Compared to previous optimization

- 161.66% increase in throughput

- 61.77% decrease in Avg latency

- 57.15% decrease in p99 Latency

• Triton inference Response Cache

• Enabled in ensemble model configuration

• Cached Stages in Ensemble

- User feature

- VSS and Item feature retrieval

Architecture - Optimization 4 – Caching Inference Requests

Data Systems – Performance

Results of Optimization

Data Systems – Performance
Performance - Optimization 4 – Caching Duplicate Requests

• Change: Caching inference requests

• *All duplicate requests*

- Cached retrieval stage. 100% cache hits for test

- Increase in throughput for duplicate requests

• Benefits (for duplicate requests)

- 69.5% increase in throughput

- 40.98% decrease in Average latency

- 46.82% decrease in p99 Latency

Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary

Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary

Before

After

Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary

• Optimization approach: Improve data system prior to increasing model capacity/performance

• Performance Improvements over Baseline

- Avg Latency: 88.72% decrease (94.01% for duplicate requests)

• 483ms to 49ms

- Throughput: ~9x inferences/second (~16x for duplicate requests)

• 33 infer/sec to 320 infer/sec

• 7.3x GPU Utilization compared to baseline

• Future Work - Redis-based Triton Response Cache

Code: https://github.com/RedisVentures/Redis-Recsys

https://github.com/RedisVentures/Redis-Recsys

Thank you!

25

For more information please contact: sam.partee@redis.com or follow on Twitter @sampartee

mailto:sam.partee@redis.com

