

## **Optimizing Data Systems**

00

for NVIDIA Merlin and Triton

March 2023

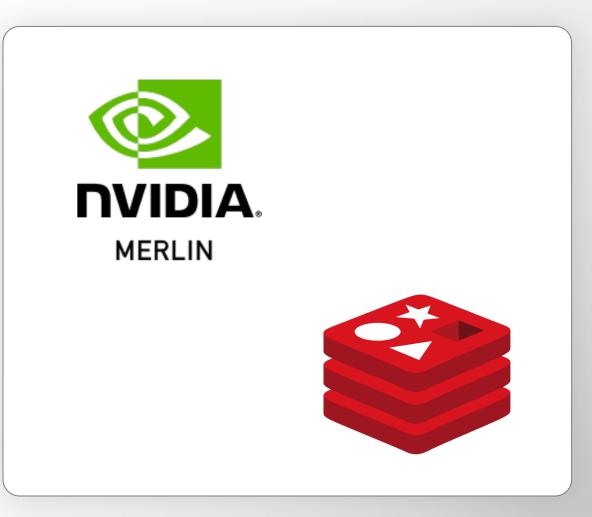
Sam Partee Principal Engineer – Redis – Applied Al

Tyler Hutcherson Senior Engineer – Redis – Applied Al

### Agenda

#### Table of Contents

- Introduction to Redis in ML Pipelines
- Recommender System Pipelines with Redis and NVIDIA Merlin
  - Introduction
  - Benchmarking setup
  - Baseline architecture and performance
  - Data pipeline optimizations
    - 1. Ensemble stage consolidation
    - 2. Direct Redis communication
    - 3. Vector search feature retrieval
    - 4. Inference caching
- Performance Summary and Next Steps



# Redis in ML Pipelines

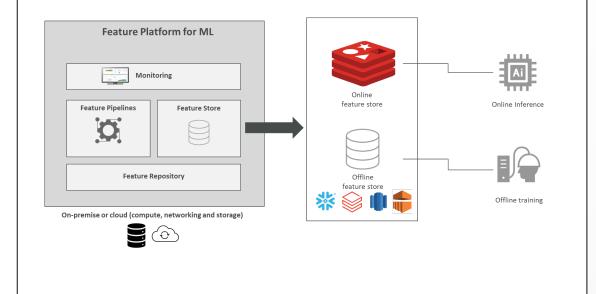




### **Redis** for Real-Time ML Data

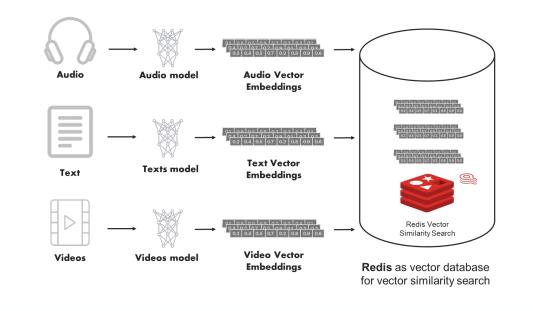
#### Single-digit millisecond Feature Retrieval

#### **Redis** Feature Store



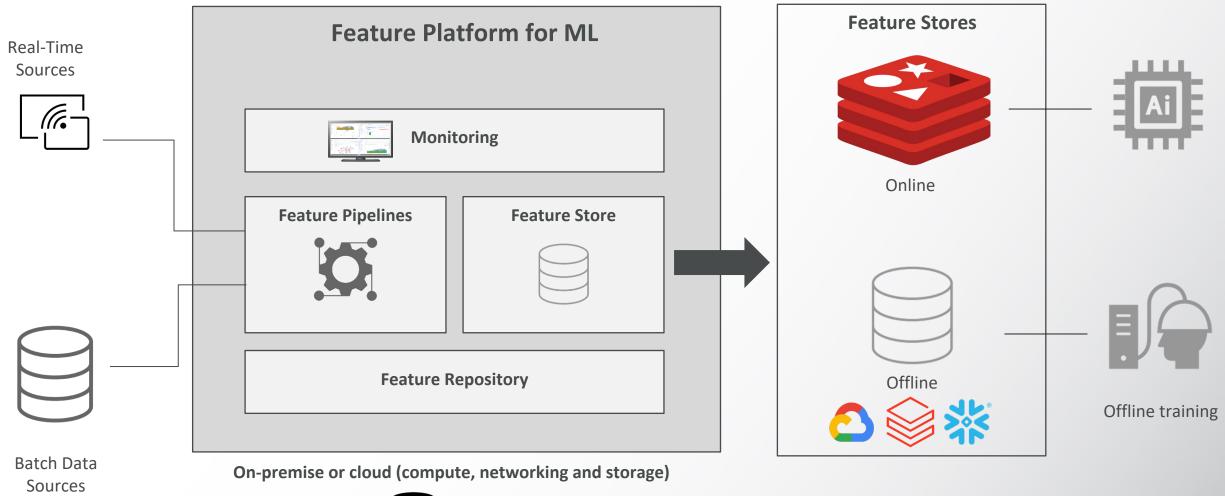
#### A Composable Platform for Intelligent Applications

#### **Redis** Feature Store for Vectors





### **Redis** – Online Feature Store

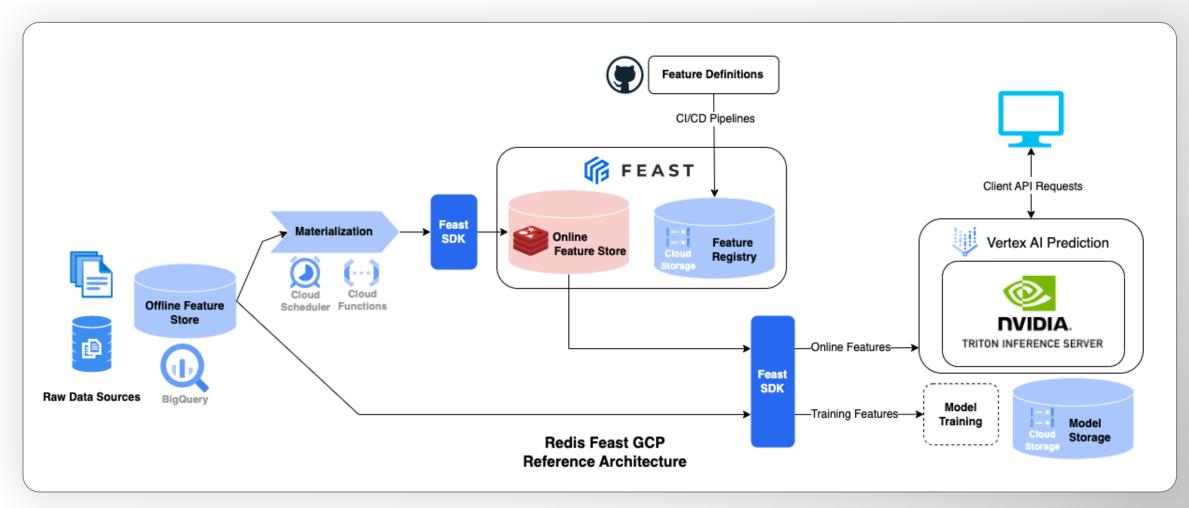






### Feature Store – GCP Reference Architecture

End-to-end feature pipeline using Redis, Triton, and Feast on GCP

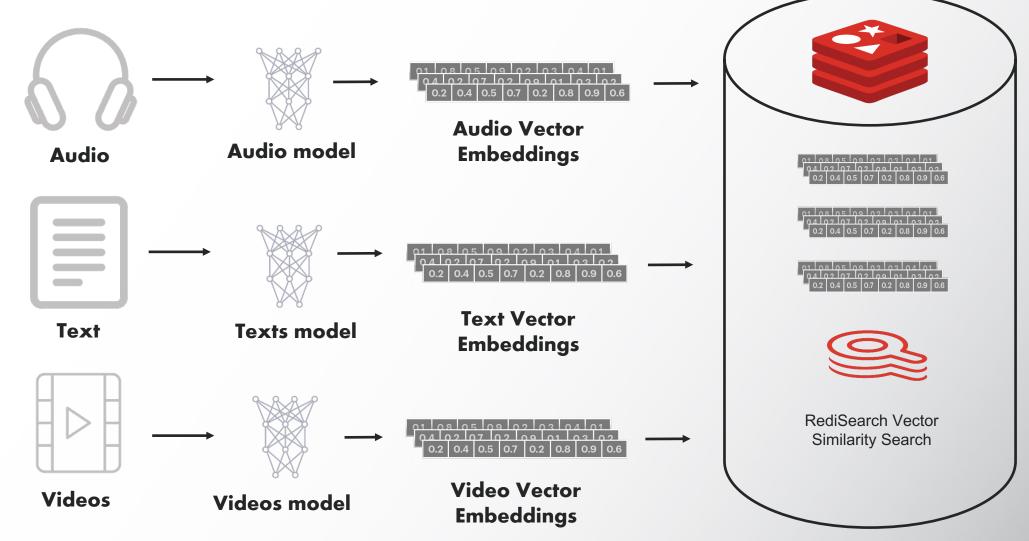




### **Redis** as a Vector Database

redis

Vector Similarity Search Pipeline with Redis



### **Redis** – Vector Similarity Search

#### Feature Set



Redis Vector Similarity Search – RediSearch

- **Redis**: Low–latency, scalable, in–memory database
- Indexing methods
  - HSNW (ANN)
  - Flat (KNN)
- Distance metrics
  - L2, Cosine, internal product
- Support for hybrid queries
  - Vector search + filtering by text, geo, etc.
- Store vectors in JSON (new in 2.6)



# Recommender System Pipelines with Redis and NVIDIA Merlin



### Data Systems – Multi-stage Recommender

#### Introduction

#### • Two Primary Stages

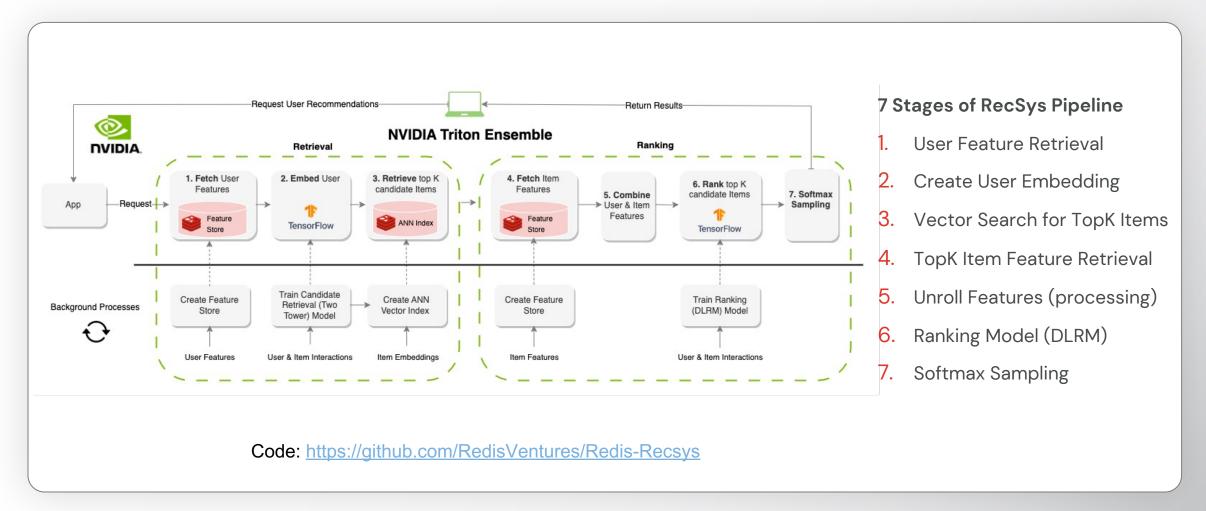
- Retrieval emphasis on speed and efficiency. A relevant subset is selected from a large pool of potential candidates. ANN algorithms commonly used.
- Ranking emphasis on precision and accuracy. Models are more computationally complex (e.g. DLRM) and rank subset of items based on likelihood of user interaction.
- Serving in Real-Time
  - **Triton Ensemble** enables multi-stage DAG processing per inference call. Variety of supported backends (e.g. Tensorflow, PyTorch, FIL, Python)
  - Low latency & high throughput is key.

- Merlin Building Blocks
  - **NVTabular** Distributed GPU Data Processing
  - Triton Model Serving
  - Merlin Systems Utilities for RecSys
  - HugeCTR Distributed RecSys Model Library



### Data Systems – Multi-stage Recommender

#### Architecture - Baseline

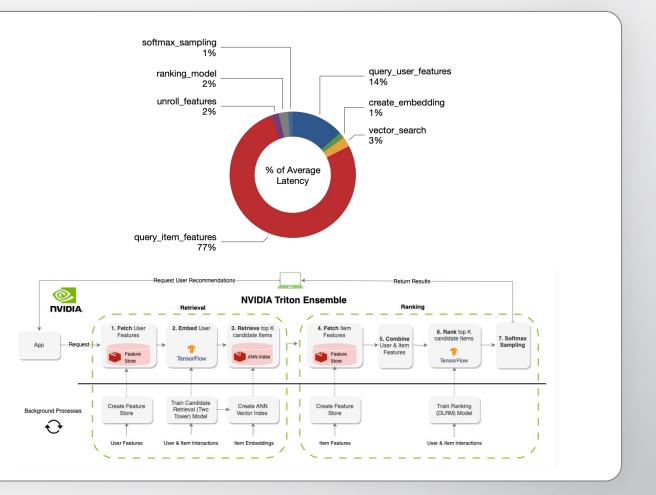




#### Performance - Baseline

#### Importance of baseline

- Don't start with model optimizations
- Ensure data pipeline first
- Approach to Optimization
  - Start with smaller models
  - Over-emphasize data pipeline
  - Optimize data movement
  - Then scale and optimize models
- Feature retrieval accounts for ~90% of latency.



### Data Systems – Multi-stage Recommender

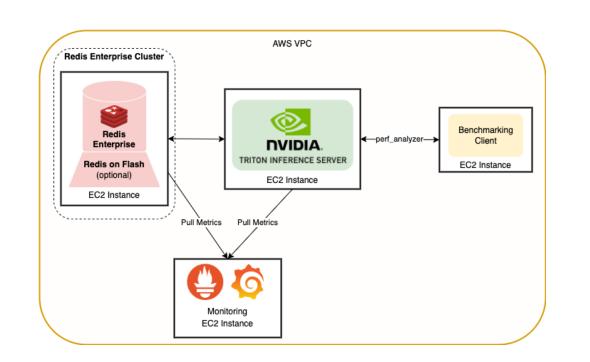
#### Benchmarking Setup

- Triton Inference Server - Instance: g4dn.xlarge, 4 vCPU, T4 16Gb GPU
- Redis Enterprise Database

Instance: i3.xlarge, 4 vCPU, 32Gb RAM
Shard Count: 1 master, 1 replica (highly available)

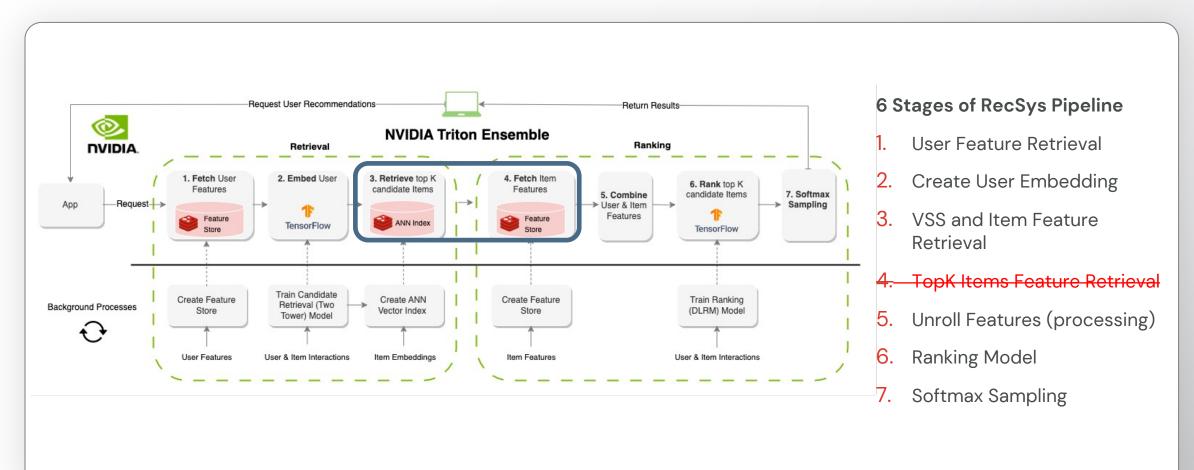
- Benchmarking Client with Perf Analyzer
  - Instance: t2.2xlarge, 8 vCPU
  - Concurrency: 16
- Grafana & Prometheus

- Instance: t3.micro, 2 vCPU



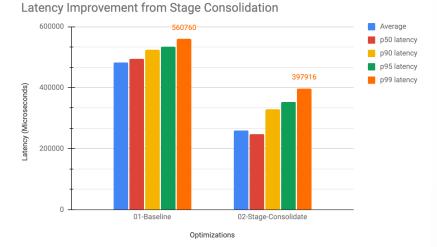


#### Architecture - Optimization 1 - Stage Consolidation

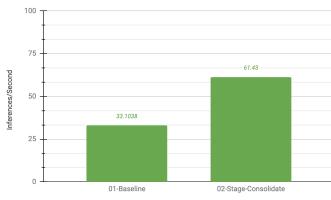




Performance - Optimization 1 - Stage Consolidation



Inferences/Second Improvement from Stage Consolidation

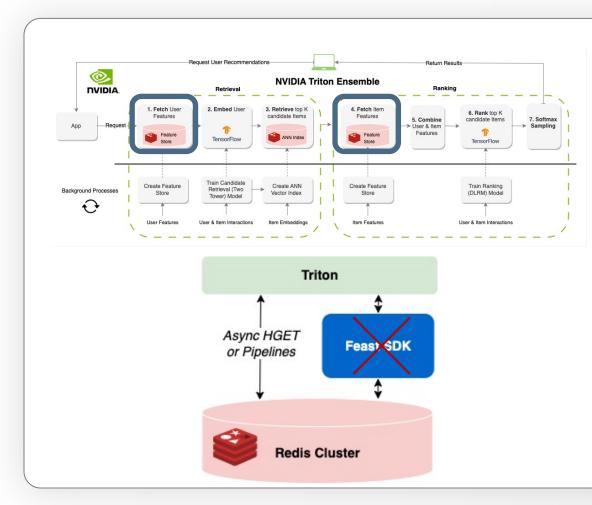


redis

#### **Results of Stage Consolidation**

- Change: Reduce number of ensemble stages by one, combining VSS and item retrieval
- Compared to baseline
  - 85.57% increase in throughput
  - 46.15% decrease in Avg latency
  - 29.22% decrease in p99 Latency

Architecture - Optimization 2 - Direct Redis Communication (Remove Feast)



redis

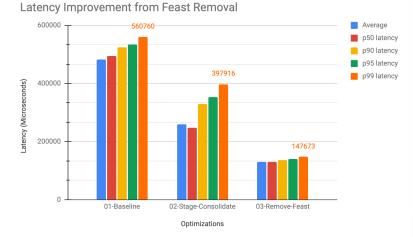


**Feast** is useful for feature management, orchestration, and cataloging.

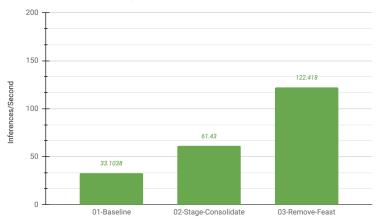
#### Drawbacks

- Serialization can add too much overhead for high-throughput applications. (protobuf)
- Direct communication with Redis client allows for async calls and pipelines.
- Enables future optimizations in combining feature retrieval and vector search.

Performance - Optimization 2 - Direct Redis Communication (Remove Feast)



#### Inferences/Second Improvement from Feast Removal

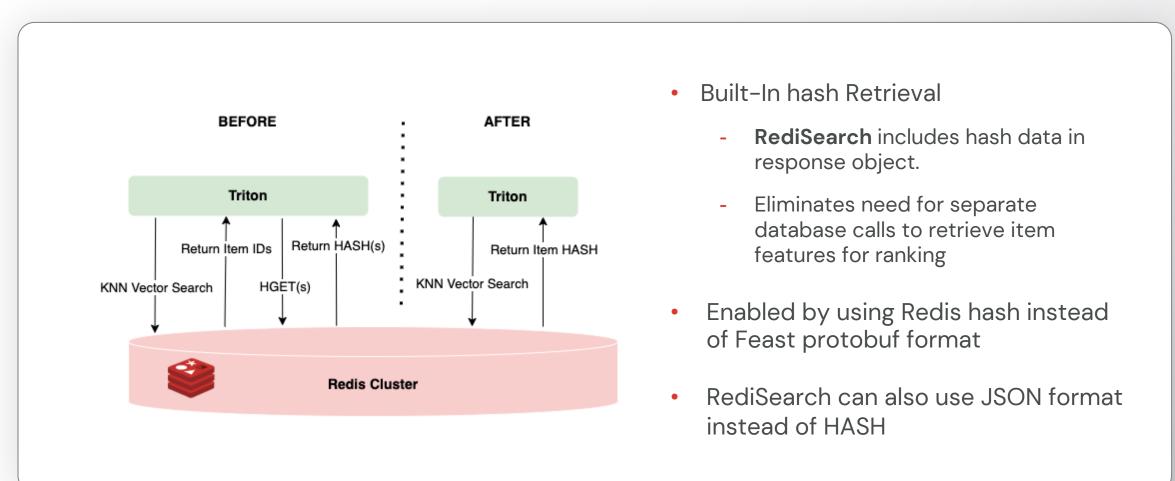


#### **Results of Feast Removal**

- Change: Remove Feast SDK Layer
- Item features retrieved by Redis client directly communicating with Redis
- Compared to previous optimization
  - 99.28% increase in throughput
  - 49.81% decrease in Avg latency
  - 62.88% decrease in p99 Latency

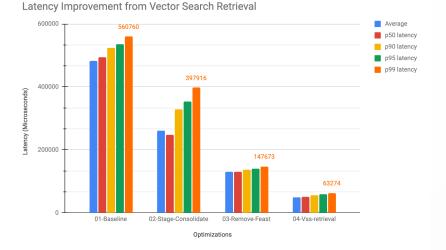


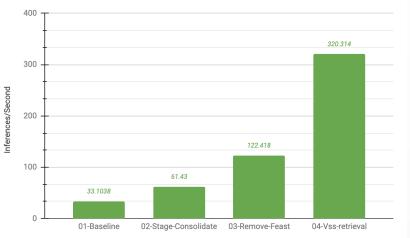
#### Architecture - Optimization 3 - Vector Search Retrieval of Item Features



**i red**is

Performance - Optimization 3 - Vector Search Retrieval of Item Features





Inferences/Second Improvement from Vector Search Retrieval

**Results of Vector Search Feature Retrieval** 

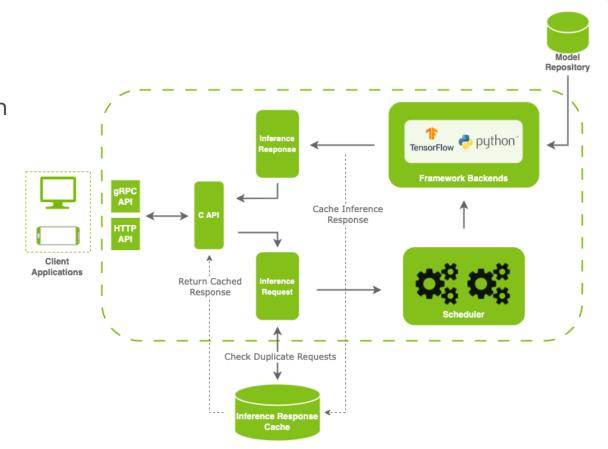
- Change: Item features retrieved by vector search instead of HGETALL
- K-1 reduction in calls to Redis where K is the number of items retrieved.
- Compared to previous optimization
  - 161.66% increase in throughput
  - 61.77% decrease in Avg latency
  - 57.15% decrease in p99 Latency



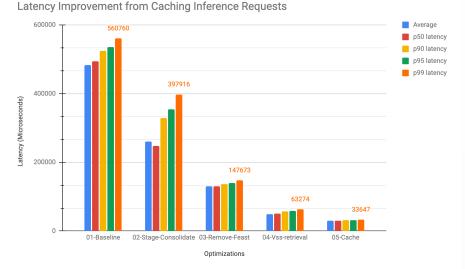
#### Architecture - Optimization 4 - Caching Inference Requests

- Triton inference Response Cache
- Enabled in ensemble model configuration
- Cached Stages in Ensemble
  - User feature
  - VSS and Item feature retrieval

dynamic\_batching {}
response\_cache {
 enable: True
}
instance\_group [{ kind: KIND\_CPU, count: 4 }]

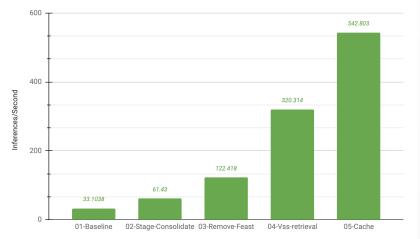


#### **Performance** - Optimization 4 - Caching Duplicate Requests





redis



**Results of Optimization** 

- Change: Caching inference requests
- \*All duplicate requests\*
  - Cached retrieval stage. 100% cache hits for test
  - Increase in throughput for duplicate requests
- Benefits (for duplicate requests)
  - 69.5% increase in throughput
  - 40.98% decrease in Average latency
  - 46.82% decrease in p99 Latency

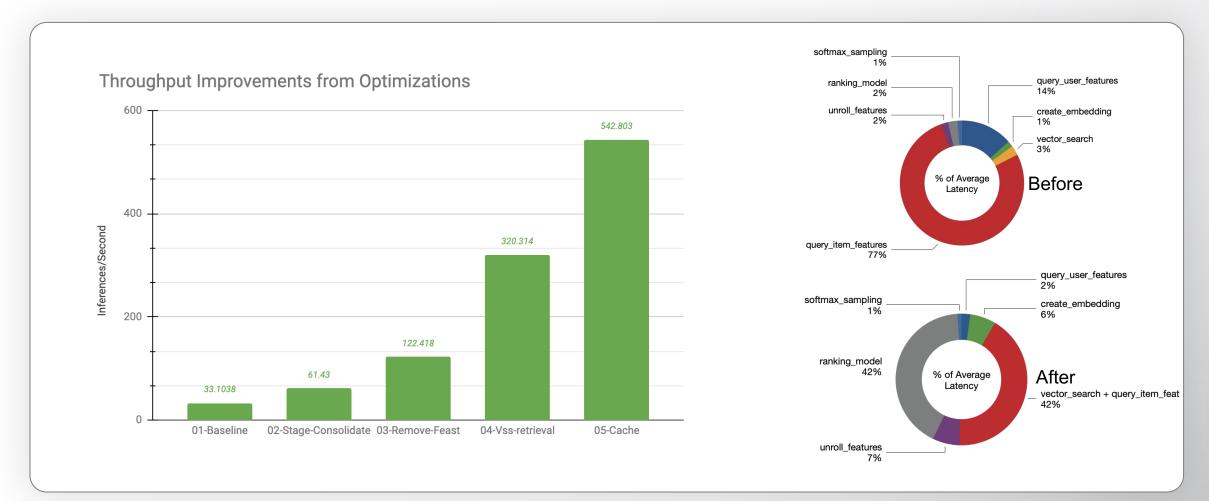
### Data Systems – Performance Summary

#### Performance Improvements from Data Pipeline Optimizations



### Data Systems – Performance Summary

#### Performance Improvements from Data Pipeline Optimizations



### Data Systems – Performance Summary

Performance Improvements from Data Pipeline Optimizations

- Optimization approach: Improve data system prior to increasing model capacity/performance
- Performance Improvements over Baseline
  - Avg Latency: **88.72% decrease** (94.01% for duplicate requests)
    - 483ms to 49ms
  - Throughput: ~9x inferences/second (~16x for duplicate requests)
    - 33 infer/sec to 320 infer/sec
- 7.3x GPU Utilization compared to baseline
- Future Work Redis-based Triton Response Cache



# Thank you!

For more information please contact: <a href="mailto:sam.partee@redis.com">sam.partee@redis.com</a> or follow on Twitter @sampartee



