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Redis in ML Pipelines

3



Redis for Real-Time ML Data

Single-digit millisecond
Feature Retrieval 

A Composable Platform for 
Intelligent Applications
Redis Feature Store for VectorsRedis Feature Store



Redis – Online Feature Store
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End-to-end feature pipeline using Redis, Triton, and Feast on GCP

Feature Store – GCP Reference Architecture

Code: https://github.com/RedisVentures/redis-feast-gcp

https://github.com/RedisVentures/redis-feast-gcp


Vector Similarity Search Pipeline with Redis
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Redis as a Vector Database



• Redis: Low-latency, scalable, in-memory 
database

• Indexing methods
• HSNW (ANN)

• Flat (KNN)

• Distance metrics
• L2, Cosine, internal product

• Support for hybrid queries
• Vector search + filtering by text, geo, etc.

• Store vectors in JSON (new in 2.6) 

Redis Vector Similarity Search –
RediSearch

Redis – Vector Similarity Search
Feature Set



Recommender System Pipelines
with Redis and NVIDIA Merlin
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Introduction

Data Systems – Multi-stage Recommender

• Two Primary Stages

- Retrieval – emphasis on speed and efficiency. A relevant 
subset is selected from a large pool of 
potential candidates. ANN algorithms commonly used.

- Ranking - emphasis on precision and accuracy. 
Models are more computationally complex (e.g. DLRM) 
and rank subset of items based on likelihood of user 
interaction.

• Serving in Real-Time

- Triton Ensemble enables multi-stage DAG 
processing per inference call. Variety of supported 
backends (e.g. Tensorflow, PyTorch, FIL, Python)

- Low latency & high throughput is key.

• Merlin Building Blocks

- NVTabular – Distributed GPU Data Processing

- Triton – Model Serving

- Merlin Systems – Utilities for RecSys

- HugeCTR - Distributed RecSys Model Library



Architecture – Baseline

Data Systems – Multi-stage Recommender

7 Stages of RecSys Pipeline

1. User Feature Retrieval

2. Create User Embedding

3. Vector Search for TopK Items

4. TopK Item Feature Retrieval

5. Unroll Features (processing)

6. Ranking Model (DLRM)

7. Softmax Sampling

Code: https://github.com/RedisVentures/Redis-Recsys

https://github.com/RedisVentures/Redis-Recsys


Performance – Baseline

Data Systems – Performance

• Importance of baseline

- Don't start with model optimizations

- Ensure data pipeline first

• Approach to Optimization

- Start with smaller models

- Over-emphasize data pipeline

- Optimize data movement

- Then scale and optimize models

• Feature retrieval accounts for ~90% 

of latency.



Benchmarking Setup

Data Systems – Multi-stage Recommender

• Triton Inference Server
- Instance: g4dn.xlarge, 4 vCPU, T4 16Gb GPU

• Redis Enterprise Database
- Instance: i3.xlarge, 4 vCPU, 32Gb RAM
- Shard Count: 1 master, 1 replica (highly available)

• Benchmarking Client with Perf Analyzer
- Instance: t2.2xlarge, 8 vCPU
- Concurrency: 16

• Grafana & Prometheus
- Instance: t3.micro, 2 vCPU



Architecture - Optimization 1 – Stage Consolidation

Data Systems – Performance

6 Stages of RecSys Pipeline

1. User Feature Retrieval

2. Create User Embedding

3. VSS and Item Feature 
Retrieval

4. TopK Items Feature Retrieval

5. Unroll Features (processing)

6. Ranking Model

7. Softmax Sampling



Results of Stage Consolidation

Data Systems – Performance
Performance - Optimization 1 – Stage Consolidation

• Change: Reduce number of ensemble 

stages by one, combining VSS and item 

retrieval

• Compared to baseline

- 85.57% increase in throughput

- 46.15% decrease in Avg latency

- 29.22% decrease in p99 Latency



Architecture - Optimization 2 – Direct Redis Communication (Remove Feast)

Data Systems – Performance

• Feast is useful for feature management, orchestration, 
and cataloging.

• Drawbacks

- Serialization can add too much overhead for 
high-throughput applications. (protobuf)

- Direct communication with Redis client allows 
for async calls and pipelines.

- Enables future optimizations in combining 
feature retrieval and vector search. 



Results of Feast Removal

Data Systems – Performance
Performance - Optimization 2 - Direct Redis Communication (Remove Feast)

• Change: Remove Feast SDK Layer

• Item features retrieved by Redis client 

directly communicating with Redis

• Compared to previous optimization

- 99.28% increase in throughput

- 49.81% decrease in Avg latency

- 62.88% decrease in p99 Latency



Architecture - Optimization 3 – Vector Search Retrieval of Item Features

Data Systems – Performance

• Built-In hash Retrieval

- RediSearch includes hash data in 
response object.

- Eliminates need for separate 
database calls to retrieve item 
features for ranking

• Enabled by using Redis hash instead 
of Feast protobuf format

• RediSearch can also use JSON format 
instead of HASH



Results of Vector Search Feature Retrieval

Data Systems – Performance
Performance - Optimization 3 - Vector Search Retrieval of Item Features

• Change: Item features retrieved by 

vector search instead of HGETALL

• K-1 reduction in calls to Redis where K 

is the number of items retrieved.

• Compared to previous optimization

- 161.66% increase in throughput

- 61.77% decrease in Avg latency

- 57.15% decrease in p99 Latency



• Triton inference Response Cache

• Enabled in ensemble model configuration

• Cached Stages in Ensemble

- User feature

- VSS and Item feature retrieval

Architecture - Optimization 4 – Caching Inference Requests

Data Systems – Performance



Results of Optimization

Data Systems – Performance
Performance - Optimization 4 – Caching Duplicate Requests

• Change: Caching inference requests

• *All duplicate requests*

- Cached retrieval stage. 100% cache hits for test

- Increase in throughput for duplicate requests

• Benefits (for duplicate requests)

- 69.5% increase in throughput

- 40.98% decrease in Average latency

- 46.82% decrease in p99 Latency



Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary



Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary

Before

After



Performance Improvements from Data Pipeline Optimizations

Data Systems – Performance Summary

• Optimization approach: Improve data system prior to increasing model capacity/performance

• Performance Improvements over Baseline

- Avg Latency: 88.72% decrease (94.01% for duplicate requests)

• 483ms to 49ms

- Throughput: ~9x inferences/second (~16x for duplicate requests)

• 33 infer/sec to 320 infer/sec

• 7.3x GPU Utilization compared to baseline

• Future Work - Redis-based Triton Response Cache

Code: https://github.com/RedisVentures/Redis-Recsys

https://github.com/RedisVentures/Redis-Recsys


Thank you!
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For more information please contact: sam.partee@redis.com or follow on Twitter @sampartee

mailto:sam.partee@redis.com

